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1. Introduction

In this lab report, the claims that were made by [1]
about the motion of a pendulum are challenged. A pendulum is a
system featuring a mass suspended by a rigid string that is
proportionally negligible in weight and fixed at a pivot point on
the end opposite to the mass. When a horizontal, unbalanced
force is applied to the mass, such as displacing it horizontally
from its point of static equilibrium, it will begin to swing with
periodic motion about its point of static equilibrium. The mass
will continue to swing until damping forces such as friction and
air resistance in the system have decayed the maximum
displacement of the pendulum to zero. Individuals wanting to
study this motion thoroughly will recognize that this system is
relatively complex, and so they will naturally question how this
motion can be modelled mathematically. Three claims were
made by [1] to describe the motion of a pendulum and motivate
this lab.

First, it was predicted that pendulums can be modelled
as damped harmonic oscillators which would follow Equation 1.
In this equation, 8 is the angular displacement, 8, is the angular
amplitude, ¢ is the time measured in seconds, T is a variable
unique to the system, T is the period, and ¢, is a phase constant.

6(t) = 6ye~t/*cos (2n%+ ®o) (1)

A damped harmonic oscillator is defined as a system whose
angular motion can be represented using a sinusoidal curve with
exponentially decaying amplitude. At first glance, it seems
reasonable to claim that a pendulum is a damped harmonic
oscillator, however this claim intrinsically makes two
assumptions: The period of the object’s motion must be
experimentally constant and independent of both the time
elapsed and the initial angle of release; The decay of the
pendulum’s amplitude is exponential. It is proven in this lab,
however, that both assumptions are only applicable at a definite
range of small angles which is determined by the accuracy to
which the experimenter can measure the pendulum’s motion.
The change in period over a set of given amplitudes was found
to be best represented as a quadratic function (see Equation 2).
Therefore, it was concluded that a pendulum’s motion cannot be
modelled as a damped harmonic oscillator.

T = To(1 + B + C6?) )

Second, if the period is constant over all angles of
release, the second prediction states that the period and length of
the pendulum are related by Equation 3 where L is the length of
the pendulum.

T ~2VL (3)

This suggests that when results are fitted to Equation 4, the
returned parameters should be k =2 and n = 0.5. However, this
does not reflect the results of this lab. Parameter “n” was found
to be experimentally 0.5, but the k parameter was found to be
equal to 2.031 £ 0.004, which is over 7 error bars above 2. This
draws the conclusion that this is not a sufficient method of

relating the period and length of a pendulum.
T =kL* 4)

Finally, if the period is constant over the given
amplitudes and the decay of the pendulum’s amplitude is
exponential, the third prediction states that the quality factor (Q)
of the pendulum can be measured using Equation 5.

Q=m; (5)

For the setup used, it was found that this definition of Q factor
was applicable when analyzing a given range of small angles.
This was concluded by recognizing the previous results which
suggested that the period is constant, and the decay is
exponential within a certain range of small angles. Using this
method of calculating Q factor, it was determined that the length
of the pendulum has a significant effect on the system’s Q
factor. In fact, it was determined that this relationship was best
represented by a fourth-degree polynomial (see Equation 6).

Q=A+BL+CL*+DI*+EL* (6)

II. Experimental Setup

One pendulum system was constructed for all the
experiments in this report (see Fig. 1). To form the pivot point of
the pendulum, a plank of plywood was placed on top of a
wardrobe in a manner that left an overhang of 20.30 £ 0.03 cm
away from the edge. Then, three textbooks were placed onto the
end of the plank contacting the wardrobe to ensure the system
remained fixed in place. Starting 2.5 £ 0.03 cm away from the
edge of the wardrobe, two holes were drilled 15.0 = 0.03 cm
apart. Three steel washers (3.1 + 0.03 ¢cm in diameter and 1.830
+ 0.005 mm in thickness) was selected as the mass that would be
suspended by nylon fishing line. Using a kitchen scale, the mass
was measured to be a total of 24.30 + 0.05 g, and the string was
measured to be 0.40 + 0.05 g. After threading the mass through
the string, both ends of the line were individually fastened in
separate holes in the plywood using screws. The length of the
string was determined arbitrarily with the intention to suspend
the mass approximately 1 meter below the plank. Since the mass
is suspended by two points, a “plumb line” made of fishing line
and three more washers was used to obtain accurate
measurements of the perpendicular distance between the pivot



point and the mass in all stages of this lab. This distance will be
referred to as the length of the pendulum in this lab. This
established a system which met the requirements detailed in [1]:
The pendulum used a string with proportionally negligible
weight compared to the mass it suspended, it permitted
adjustability in length, and its pivot point was fixed in place.

Fig. 1. Final construction of the pendulum. Angles were traced onto
the white paper shown to allow experimenters to release the mass from
the same reference point in each trial. Direction for positive (red arrow)
and negative (blue arrow) angular displacement is shown.

In addition to meeting these base requirements, further
consideration was made in experimental design to control
variables that could affect the results of this lab. To begin, it was
decided that the starting length of the pendulum would be
constructed to be relatively long since it is generally considered
that longer pendulums produce longer periods [2]. It was
anticipated that constructing a pendulum with a longer period
(and therefore a lower average velocity), would help reduce the
effects of small changes in air resistance which may influence
the data generated in this lab. Additionally, determining the
change of the mass’ position over certain moments in time can
be identified more precisely when the mass is moving slowly.
Secondly, while suspending the mass by two points instead of
one made it more difficult to measure the length of the
pendulum, it virtually guaranteed that the mass would not rotate,
and that the pendulums motion would remain perpendicular to
the observer. This also instilled more confidence when
measuring angles by hand since two lengths of string had to be
aligned with a protractor rather than just one, yielding a lower
uncertainty in effect. Finally, the following decisions were made
to measure the angular displacement of the pendulum. To
measure this angle by hand, lines were traced using a protractor
onto a page to be placed at the pivot point of the pendulum (see
Fig. 1). To measure angles using [3], a software which can track
the motion of an object in a video, the mass was coloured black,
and a white background was setup behind the path of motion of
the mass as shown in Fig. 2. Importance was also placed on
ensuring that the videos used with this software were recorded at
a constant frame rate since the software does not account for a

variable frame rate when calculating the elapsed time that
corresponds to each measured position of the mass.

Fig. 2. A white background was added behind the pendulum to
facilitate auto-tracking. This image also shows the direction in which Q
factor was measured.

II1. Methods

First, it was measured that the length of the pendulum
was 0.9620 + 0.0005 m. Using this length, the following
experiments were performed to determine the relationship
between angle and period, and then the relationship between
angular amplitude and elapsed time.

The pendulum was raised to 1.40 + 0.03 rad from its
position at equilibrium and then released. Ten oscillations were
timed to render the uncertainty posed by the experimenter’s
reaction time proportionally negligible to the period measured.
This was repeated for three separate trials to obtain an average
measured period for this specific angle. This process was
repeated for angles ranging 1.22 + 0.03 rad to 0.35 + 0.03 rad by
increments of 0.02 + 0.03 rad, and then repeated on the other
side of the pendulum to test negative angles for asymmetry. Data
was recorded in Table I of Appendix A.

Beginning at the largest angular displacement that fit
within the bounds of the white background, the pendulum was
recorded at 59.96 FPS until the amplitude of the pendulum was
very small and the decrease in amplitude after every oscillation
was unnoticeable. This video was imported into the program
“Tracker” [3]. The grayscale and brightness filters were applied
to help the tracking software better differentiate between the
mass and the background. Scale was established using a 30 cm
ruler that had been taped to the background so that it would be in
the frame of the video. The program used this video to measure,
in meters, the x-position of the mass in every frame. Using this
data, angular displacement was calculated. First, the x-positions
relative to the position of equilibrium were calculated by
subtracting the mean x-position from each individual x-position.
Then, the arcsine function was applied to the ratio between each
“true x-position” and the originally measured pendulum length
to represent these positions as angular displacement. Finally, the
local extrema of the pendulum’s angular displacement were
determined from these results. The absolute value of these local
extrema provided values for the amplitude of the pendulum’s
swing which was recorded in Table II of Appendix A along with
the corresponding values for time elapsed.



It was found from the results of the experiments
previously described that the relationship between period and
angle is experimentally constant between a certain range of
small angles. The range associated with the uncertainties of the
auto-tracking method was found to be between -0.28 + 0.02 rad
and 0.28 + 0.02 rad (To see how this was found, see Appendix
O).

To find both the relationship between the pendulum
length and the period, and the relationship between the
pendulum length and the q factor, the following experiment was
performed. The length of the pendulum was first adjusted to be
1.1000 + 0.0005 m by removing one screw, puling the fishing
line to the desired height, and then refastening the screw. Then,
the amplitude decay was measured using “Tracker” in the same
way that previously described. This was repeated seven more
times where the length was decreased between each trial. It was
aimed for the eighth trial to have a length of approximately 15%
of the starting length (actual measurement of 0.1630 + 0.0005
m). The change in length between each trial was generally
constant, however, it was aimed to have smaller increments for
IV. Results

the first three repetitions where the ratio between the size of the
mass and the length of the pendulum would be smaller. The data
generated at these longer lengths would therefore have lower
uncertainties.

Starting at amplitudes within the small angle range,
multiple measurements of period were obtained for each length
as this is represented as the time elapsed between each
neighbouring pair of local maxima, and each neighbouring pair
of local minima. This was recorded in Tables IV-XI of Appendix
A.

Upon inspection of the results from measuring Q factor
using both methods as instructed by [1], it was determined that
measuring Q factor using Equation 5 was more accurate, as it
calls for amplitudes that decay exponentially. From the results of
previously described experiments, the decay can be represented
by an exponential function at smaller angles, and so this method
is suitable for this setup.
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Fig. 3.

Identifies the relationship between angles of release and the average recorded period for a pendulum. Release angles ranging from -1.396

rad to +1.396 rad were measured by hand, producing an uncertainty of = 0.03 rad. Period was measured as an average using a handheld timer as
described in I. Procedure, creating an uncertainty of = 0.01 seconds. The data was fit to a quadratic curve using [4] and [5] (Using Equation 2: C =
0.038 +0.002, B=0.000 + 0.001, 7o = 1.953 £+ 0.005) which sufficiently describes the trend. As a result, this data disagrees with the predictions from
Equation 1 since this pendulum consistently demonstrates a non-constant period over different angles.

A. Angle and Period Measurements Performed by Hand.

When determining the uncertainties for angle, there
were only measurable Type B uncertainties. This was
determined by tracing angle markers onto a page using a
protractor which measured in increments of 1 degree, and then
aligning the pendulum to the desired angle re releasing the
pendulum. As a result, it was determined that angle could be
measured with an uncertainty of + 1 degrees which was divided
by 2 in accordance with course expectations. This produced the
uncertainty of + 0.03 rad.

When determining the uncertainties for period, there
were Type B and Type A uncertainties. The Type B uncertainty
can be represented by the reaction time of the experimenter
which was measured to be an average of approximately 0.1
seconds (see Table III in Appendix A). The Type A uncertainty
was calculated to be approximately 0.003 seconds by calculating
the ratio between the standard deviation of the measured time
and the square root of the number of measurements. In
accordance with course expectations, the highest uncertainty of
0.1 seconds was accepted. This uncertainty was further reduced
by a factor of 10 since 10 oscillations were measured in each
trial when this method was used.



Amplitude of a Pendulum as a Function of the Time Elapsed
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Fig. 4. Depicts the amplitude of a pendulum’s oscillation starting at an angle of 0.85 + 0.02 rads over a particular time interval (see Table II in
Appendix A for raw data). Comparing this fit to the exponential component of Equation 1 using [4] and [5], t=0.746 £ 0.001 and T = 162.5+ 0.4.
Since this was done using a frame-by-frame analysis of a 59.96-FPS video recording of the pendulum’s motion, the horizontal error bars are not
visible as they are representing the + 0.008 seconds of uncertainty in the measurement of time. In contrast, the vertical error bars represent the
uncertainty of in the pendulum’s amplitude which is represented differently for each point. As shown by the residuals, fitting this data to an
exponential function does not sufficiently describe the pattern formed by the decay of the pendulum’s amplitude.

B. Angle and Period Measurements Performed Using Tracker “motion distortion” in each frame as shown in Fig. 5. The
uncertainty of the length was determined as the smallest interval
of measurement (0.001 m) divided by 2. To calculate the angle
of the pendulum, the x-position of the mass must be divided by
the length. As a result, it is necessary to determine the largest
percentage uncertainty between these values and multiply this
ratio by this percentage accordingly. Then, the arcsine function

When determining the uncertainty in elapsed time, there
were only measurable Type B uncertainties. In accordance with
course expectations, this is represented as the lowest interval of
measurement of time divided by 2. For the 59.96 Hz video
recorded, the uncertainty was therefore approximately = 0.008

seconds. was applied to this ratio and its uncertainty to receive each angle
To determine the uncertainty in measured angle there and its respective uncertainty.

were only measurable Type B uncertainties. To determine this R S o e

uncqtainty, it was first required that the uncertainties. of the x- : i, a 3 e

position and the length of the pendulum were determined. The - : - : =

uncertainty of the x-position of the mass could be calculated by . SRR SRR R R

considering that the smallest interval of measurement of these Fig. 5. Each frame of the video recorded of the pendulum had some

. . distortion which increased the uncertainty in the mass’ x-position.
values was the diameter of the mass itself to account for the y P

Period of a Pendulum as a Function of its Length
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Fig. 6. Plots the relationship between the period and the length of the pendulum for lengths between 0.1630 £ 0.0005 m and 1.1000 + 0.0005 m.
Using [4] and [5], the data used for this graph was fitted to Equation 4 where k =2.031 + 0.004 and n = 0.498 + 0.004. On this plot, the vertical error
bars are small, but they represent an uncertainty of + 0.008 seconds resulting from the frame rate of 59.96 FPS that was used when recording the
videos. The horizontal error bars are also too small to be visible, but they represent an uncertainty of = 0.0005 m to reflect the uncertainty of
measuring the length with a ruler that measured with an accuracy of 1 mm.



Period of a Pendulum as a Function of its Length
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Fig. 7.  Plots the relationship between the period and the length of the pendulum on a log-log plot for lengths between 0.1630 + 0.0005 m and
1.1000 + 0.0005 m. Using [4] and [5], the data used for this graph was fitted to Equation 4 where k =2.031 £ 0.004 and n = 0.498 = 0.004. On this
plot, the vertical error bars are small, but they represent an uncertainty of + 0.008 seconds resulting from the frame rate of 59.96 FPS that was used
when recording the videos. The horizontal error bars are also too small to be visible, but they represent an uncertainty of + 0.0005 m to reflect the
uncertainty of measuring the length with a ruler that measured with an accuracy of 1 mm.

C. Period Uncertainties used for Fig. 7. type A uncertainties can also be calculated for the period
measurements. However, for all periods measured, the type b

Since it was considered that the period is constant at the uncertainty was larger.

angles measured for this experiment, it is important to note that

Quality Factor of a Pendulum as a Function of its Length
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Fig. 8. Shows the relationship between the measured Q factor and the length of the pendulum for lengths that range from 0.1630 + 0.0005 m to
1.1000 + 0.0005 m. This graph was plotted using [4] and [5]. Upon comparing 5 different fitting functions (see Appendix D), it was determined that
the trend was best represented by fitting the data to a fourth-degree polynomial such as the one described by Equation 6 where A =-210 + 30, B=
6300 + 300, C =-14800 + 900, D = 13000 £+ 1000, and E = -3800 £ 400. On this plot, the small, vertical error bars represent the uncertainty
calculated for the measurement of Q factor which varies for each point (ranges from + 3 to + 6, see Table XIII of Appendix A). In contrast, the
horizontal error bars are constant for all points, however, they are too small to be visible. The horizontal error bars represent an uncertainty of +
0.0005 m to reflect the uncertainty of measuring length with a ruler to the nearest mm. These results indicate that the Q factor of the pendulum is
strongly dependent on the length of the pendulum and as a result, there is a length between 1.1000 £ 0.0005 m and 0.9790 + 0.0005 m where Q factor
is maximized for this setup.



D. Q factor Uncertainties Used for Fig. §.

Since Q factor was measured using Equation 5, the
uncertainty was determined by comparing the percentage
uncertainties of the period and the calculated tau value at each

V. Analysis and Discussion

A. Period vs Angle

As shown in Fig. 3, the trend in the data measured is
best represented when fit with a quadratic function (see Equation
2). This was done using [4] and [5] which outputted values for
C, B, and Ty. The value of B was found to be experimentally
zero since it was calculated to be less than its uncertainty. This is
an important result because it confirms that any asymmetrical
characteristics of the pendulum’s motion were negligible.

Evidently, this result suggests that there is a
relationship between the angle of release and the period of the
pendulum’s swing. However, this data suggests that the period
becomes experimentally constant at smaller angles. Data points
below 0.35 rad would not have reinforced this conclusion since
the error bars span below the vertex of the line of best fit.
Following this conclusion, it was found that when using tracker,
angles within -0.28 £ 0.02 rad to 0.28 = 0.02 rad will yield
periods that are experimentally constant (see Appendix C)

B. Angular Amplitude vs Time Elapsed

Fig. 4 provides a clear indication that the pendulum’s
amplitude decays as time progresses since its initial release. The
rate at which this decay occurs is still unknown since the data
did not fit an exponential curve.

Q factor must be determined using both methods, as instructed
by [1]:

1. According to [1], Q/n can be determined as the number
of oscillations it takes for the amplitude of the
pendulum’s motion to decay to (™ *100) % of the
original amplitude. From the results of B., the starting
amplitude was 0.901 = 0.008 rad and the final
amplitude was 0.054 = 0.008 rad. Therefore, Q factor is
calculated to be 593 + 2 (see Appendix B).

2. The second method requires the use of Equation 5 [1].
Based on the mathematical model shown in Equation 1,
it was determined that t is equal to 162.5 + 0.4 seconds
using a fitted exponential function to the data points in
Table II (see Appendix A). Similarly, period was
calculated to be 1.968 + 0.008 seconds by taking the
average period of these data points. Using these values,
Q factor was calculated to be 259 + 1.

These Q factors vary greatly from one another (a difference
of 167 error bars). This is likely since both methods assume that
the decay of the pendulum’s amplitude is exponential.
Additionally, method #2 also makes use of a period that is
assumed to be constant over the entire pendulum suggesting the

point. In accordance with course expectations, the largest
percentage uncertainty was taken and applied to the calculated Q
factor. This resulted in a Q factor unique to each point.

conclusion that this method is less accurate. However, since
neither method requires a specific range of amplitudes, a range
of small angles were used in the experiments that followed that
render both assumptions to be experimentally true. Now that
both methods are applicable, method #2 is chosen to calculate Q
factor since it conforms to the entire sample size whereas
method #1 only considers the first and last recorded data points.

C. Period vs Length

As shown in Fig. 7., a power law function has some
correlation to the relationship between the period and the length
of the pendulum. As indicated by the residuals however, this fit
is not perfect as some points lie a significant amount of error
bars away from the line of best fit. Moreover, while the
parameter “n” in Equation 4 was experimentally equal to 0.5, the
parameter “k” was not experimentally equal to 2 as predicted by
[1]. In fact, the value for “k was over 7 error bars above this
predicted value. Upon further analysis, Equation 3 does not
equate when imputing the associated units of each variable,
suggesting there is likely another variable or a universal constant
that was deemed negligible. As demonstrated by these results,
this was a poor assumption.

D. Q Factor vs Length

In Fig. 8., it is shown that the change in the calculated
Q factor between adjacent points is generally on a scale of over
10 error bars. This undeniably suggests that the measured Q
factor of the pendulum is dependent on the length of a
pendulum. Furthermore, after testing multiple best fit functions
(see Appendix D), it was found that this relationship was best
represented by a fourth-degree polynomial (see Equation 6).
This was concluded since the other fit functions that were tested
outputted higher uncertainties, and featured residuals where data
points still formed a pattern. These are signs that the function
was not representing the full relationship between the variables
that were tested. The fitting of this curve results in a local
maximum between the lengths of 1.1000 + 0.0005 m and 0.9790
+ 0.0005 m. This indicates that the Q factor can be maximized
for this given setup if the length is changed to the optimal length
that would be found within this range. It is worth noting
however, that this fit was made using 5 parameters to 8 data
points. This calls the credibility of these results into question. To
achieve more credible results, one must repeat this experiment
for more pendulum lengths.

VI. Uncertainties

In this lab, some assumptions were made about the
experimental setup and methods of testing that could have
affected certain outcomes of the experiments.

One potential source of uncertainty in the results presented
is found in the securement of the string ends at the pivot of the



pendulum. As explained in section I, the pivot was established
by screwing the string ends into a wooden board. By choosing to
use this setup for these experiments, the assumption was
implicitly made that the string would not be rubbing against the
board or screw (generating friction), nor would it be slipping out
of the hole (causing an increase in length). An attempt was made
to avoid these effects by using new and reliable materials,
however, a more secure system could have been constructed by
sacrificing the feasibility at which the length could be manually
adjusted. Additionally, unpredictable variations in the testing
environment could have been identified and addressed by
performing more trials which would permit the calculation of
Type A uncertainties.

An increase in unpredictable friction within the system
would have an impact on the decay of the pendulum’s amplitude
which was shown in Fig. 4. Similarly, any significant increase in
length during the testing would impact the numerical results
from the experiments summarized by Fig. 3, and Fig. 5-7. The
experiments associated with these figures tested the period, and
quality factor of the pendulum, both of which were concluded to
have some relationship with the length of the pendulum.

VII. Conclusion

In conclusion, the results of this lab clearly demonstrate
that the claims made by [1] feature mistaken assumptions about
the motion of a pendulum.

First, contrary to what was assumed, the period of a
pendulum is not independent of its amplitude and its amplitude
does not decay exponentially for angles between g and 0 rad.
Accordingly, this disagrees with the provided mathematical
model that is described in Equation 1. However, it was found
that both assumptions become valid at a smaller range of angles
that is determined by the accuracy to which the experimenter can

measure the pendulum’s motion. Using the tracker method, this
range of angles was calculated to be between -0.28 + 0.02 rad
and 0.28 + 0.02 rad.

As a consequence of these incorrect assumptions, the
two suggested methods of measuring Q factor disagree as they
both rely on the mathematical model correctly predicting the
motion of the pendulum. To obtain the most accurate
measurement of Q factor for this pendulum, it was determined
that method #2 would be used since at the small range of
amplitudes, both assumptions become experimentally true. With
both methods deemed applicable, method #2 was chosen to
calculate Q factor because it conforms to the entire sample size
whereas method #1 only considers the first and last recorded
data points.

Even after using methods that addressed the previous
mistaken assumptions, it was found that the period and length of
the pendulum cannot be related by Equation 3, as predicted by

[1].

Finally, it was found that the Q factor of the pendulum
was dependent on the length. Furthermore, the found
relationship suggested that there is a length between 1.1000 £
0.0005 m and 0.9790 £ 0.0005 m which would maximize the Q
factor of the pendulum.

To achieve more specific and definitive conclusions,
more data must be taken, primarily if more definitive
conclusions are desired regarding the relationship between the Q
factor and length of the pendulum. However, as previously
discussed, data measured for smaller lengths will feature greater
uncertainties. Therefore, to proceed, a smaller mass must be
used, and future videos must be recorded at higher frame rates to
obtain data that is still conclusive.



Appendix A

Table I. Raw data from Period vs Angle
Table II. Raw data from Angular Amplitude vs Time Elapsed

Table III. Reaction time of experimenter was determined by taking the average of 20 trials. In each trial, the goal
of the experimenter was to start the timer used in Part 1: Period vs Angle and then stop it as close to 2.00 seconds as
possible. Each time was recorded. The difference was considered the reaction time, and a mean reaction time was
calculated to quantify the Type B uncertainty for the periods measured in Part I: Period vs Angle.

Table IV - XI. Raw data from pendulum videos recorded for different lengths.
Table XII. Data calculated for Period vs Length

Table XIII. Data calculated for Q Factor vs Length

Appendix B

Calculating Q factor using method #1. Calculating uncertainty for the Q factor measured
- using method #1 [7], [8].
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Appendix C

Calculating the range of angles where the period is experimentally constant according to uncertainties generated in
auto-tracking method:

Obtain auto-tracked data representing the period vs amplitude relationship from Table II, Appendix A. Then fit to
Equation 2 using [4] and [5]. This generated the following fit parameters:

To=1.9597208694222716 +/- 0.000020372751545723864
B =0.0007285943931826244 +/- 0.003056680125548378
C=0.05216760171605739 +/- 0.0006491686283426898

The local minimum of this function can therefore be calculated to be ~ (0.00698 rad, 1.959734559 s). Then
the uncertainty of measuring time with “Tracker” [3] (0.008 s) was added which indicated that angles on the
quadratic fit function, whose corresponding period lies below the line of T = 1.967734559 would generate
experimentally constant periods. Intersecting this line with the quadratic function found that angles above -0.313683
rad, and below ~0.300273 rad generate periods that are experimentally constant. To account for the uncertainty in
the ability to measure angles using this method (highest was 0.02 rad), it was considered that for the pendulum
lengths measured, angles within -0.28 + 0.02 to 0.28 £+ 0.02 will yield periods that are experimentally constant.

Appendix D

Q Factor vs Length for a Pendulum
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Fig. 9. Same data as Fig. 7. but it was fitted to a linear function instead.

@ Factor vs Length for a Pendulum
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Fig. 10. Same data as Fig. 7. but it was fitted to a quadratic function instead.



Q Factor vs Length for a Fendulum
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Fig. 11. Same data as Fig. 7. but it was fitted to a third-degree polynomial function instead.

Q Factor vs Length for a Pendulum
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Fig. 12. Same data as Fig. 7. but it was fitted to a exponential function instead.

Q Factor vs Length for a Pendulum
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Fig. 13. Same data as Fig. 7. but it was fitted to a power law function instead.
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