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I. Introduction 

In this lab report, the claims that were made by [1] 

about the motion of a pendulum are challenged. A pendulum is a 

system featuring a mass suspended by a rigid string that is 

proportionally negligible in weight and fixed at a pivot point on 

the end opposite to the mass. When a horizontal, unbalanced 

force is applied to the mass, such as displacing it horizontally 

from its point of static equilibrium, it will begin to swing with 

periodic motion about its point of static equilibrium. The mass 

will continue to swing until damping forces such as friction and 

air resistance in the system have decayed the maximum 

displacement of the pendulum to zero. Individuals wanting to 

study this motion thoroughly will recognize that this system is 

relatively complex, and so they will naturally question how this 

motion can be modelled mathematically. Three claims were 

made by [1] to describe the motion of a pendulum and motivate 

this lab.  

First, it was predicted that pendulums can be modelled 

as damped harmonic oscillators which would follow Equation 1. 

In this equation, 𝜃 is the angular displacement, 𝜃0 is the angular 

amplitude, t is the time measured in seconds, τ is a variable 

unique to the system, T is the period, and 𝜑0 is a phase constant. 

𝜃(𝑡) =  𝜃0𝑒−𝑡/𝜏cos (2𝜋
𝑡

𝑇
+ 𝜑0)               (1) 

A damped harmonic oscillator is defined as a system whose 

angular motion can be represented using a sinusoidal curve with 

exponentially decaying amplitude. At first glance, it seems 

reasonable to claim that a pendulum is a damped harmonic 

oscillator, however this claim intrinsically makes two 

assumptions: The period of the object’s motion must be 

experimentally constant and independent of both the time 

elapsed and the initial angle of release; The decay of the 

pendulum’s amplitude is exponential. It is proven in this lab, 

however, that both assumptions are only applicable at a definite 

range of small angles which is determined by the accuracy to 

which the experimenter can measure the pendulum’s motion. 

The change in period over a set of given amplitudes was found 

to be best represented as a quadratic function (see Equation 2). 

Therefore, it was concluded that a pendulum’s motion cannot be 

modelled as a damped harmonic oscillator.  

𝑇 = 𝑇0(1 + 𝐵𝜃 + 𝐶𝜃2)     (2) 

Second, if the period is constant over all angles of 

release, the second prediction states that the period and length of 

the pendulum are related by Equation 3 where L is the length of 

the pendulum.  

𝑇 ≈ 2√𝐿         (3) 

This suggests that when results are fitted to Equation 4, the 

returned parameters should be k = 2 and n = 0.5. However, this 

does not reflect the results of this lab. Parameter “n” was found 

to be experimentally 0.5, but the k parameter was found to be 

equal to 2.031 ± 0.004, which is over 7 error bars above 2. This 

draws the conclusion that this is not a sufficient method of 

relating the period and length of a pendulum.  

𝑇 = 𝑘𝐿𝑛            (4) 

Finally, if the period is constant over the given 

amplitudes and the decay of the pendulum’s amplitude is 

exponential, the third prediction states that the quality factor (Q) 

of the pendulum can be measured using Equation 5. 

𝑄 =  𝜋
𝜏

𝑇
            (5) 

For the setup used, it was found that this definition of Q factor 

was applicable when analyzing a given range of small angles. 

This was concluded by recognizing the previous results which 

suggested that the period is constant, and the decay is 

exponential within a certain range of small angles. Using this 

method of calculating Q factor, it was determined that the length 

of the pendulum has a significant effect on the system’s Q 

factor. In fact, it was determined that this relationship was best 

represented by a fourth-degree polynomial (see Equation 6). 

𝑄 = 𝐴 + 𝐵𝐿 + 𝐶𝐿2 + 𝐷𝐿3 + 𝐸𝐿4              (6) 

II. Experimental Setup 

 One pendulum system was constructed for all the 

experiments in this report (see Fig. 1). To form the pivot point of 

the pendulum, a plank of plywood was placed on top of a 

wardrobe in a manner that left an overhang of 20.30 ± 0.03 cm 

away from the edge. Then, three textbooks were placed onto the 

end of the plank contacting the wardrobe to ensure the system 

remained fixed in place. Starting 2.5 ± 0.03 cm away from the 

edge of the wardrobe, two holes were drilled 15.0 ± 0.03 cm 

apart. Three steel washers (3.1 ± 0.03 cm in diameter and 1.830 

± 0.005 mm in thickness) was selected as the mass that would be 

suspended by nylon fishing line. Using a kitchen scale, the mass 

was measured to be a total of 24.30 ± 0.05 g, and the string was 

measured to be 0.40 ± 0.05 g. After threading the mass through 

the string, both ends of the line were individually fastened in 

separate holes in the plywood using screws. The length of the 

string was determined arbitrarily with the intention to suspend 

the mass approximately 1 meter below the plank. Since the mass 

is suspended by two points, a “plumb line” made of fishing line 

and three more washers was used to obtain accurate 

measurements of the perpendicular distance between the pivot 



point and the mass in all stages of this lab. This distance will be 

referred to as the length of the pendulum in this lab. This 

established a system which met the requirements detailed in [1]: 

The pendulum used a string with proportionally negligible 

weight compared to the mass it suspended, it permitted 

adjustability in length, and its pivot point was fixed in place.  

 

Fig. 1. Final construction of the pendulum. Angles were traced onto 

the white paper shown to allow experimenters to release the mass from 

the same reference point in each trial. Direction for positive (red arrow) 

and negative (blue arrow) angular displacement is shown. 

In addition to meeting these base requirements, further 

consideration was made in experimental design to control 

variables that could affect the results of this lab. To begin, it was 

decided that the starting length of the pendulum would be 

constructed to be relatively long since it is generally considered 

that longer pendulums produce longer periods [2]. It was 

anticipated that constructing a pendulum with a longer period 

(and therefore a lower average velocity), would help reduce the 

effects of small changes in air resistance which may influence 

the data generated in this lab. Additionally, determining the 

change of the mass’ position over certain moments in time can 

be identified more precisely when the mass is moving slowly. 

Secondly, while suspending the mass by two points instead of 

one made it more difficult to measure the length of the 

pendulum, it virtually guaranteed that the mass would not rotate, 

and that the pendulums motion would remain perpendicular to 

the observer. This also instilled more confidence when 

measuring angles by hand since two lengths of string had to be 

aligned with a protractor rather than just one, yielding a lower 

uncertainty in effect. Finally, the following decisions were made 

to measure the angular displacement of the pendulum. To 

measure this angle by hand, lines were traced using a protractor 

onto a page to be placed at the pivot point of the pendulum (see 

Fig. 1). To measure angles using [3], a software which can track 

the motion of an object in a video, the mass was coloured black, 

and a white background was setup behind the path of motion of 

the mass as shown in Fig. 2. Importance was also placed on 

ensuring that the videos used with this software were recorded at 

a constant frame rate since the software does not account for a 

variable frame rate when calculating the elapsed time that 

corresponds to each measured position of the mass.  

 

Fig. 2. A white background was added behind the pendulum to 

facilitate auto-tracking. This image also shows the direction in which Q 

factor was measured. 

III. Methods 

First, it was measured that the length of the pendulum 

was 0.9620 ± 0.0005 m. Using this length, the following 

experiments were performed to determine the relationship 

between angle and period, and then the relationship between 

angular amplitude and elapsed time.  

The pendulum was raised to 1.40 ± 0.03 rad from its 

position at equilibrium and then released. Ten oscillations were 

timed to render the uncertainty posed by the experimenter’s 

reaction time proportionally negligible to the period measured. 

This was repeated for three separate trials to obtain an average 

measured period for this specific angle. This process was 

repeated for angles ranging 1.22 ± 0.03 rad to 0.35 ± 0.03 rad by 

increments of 0.02 ± 0.03 rad, and then repeated on the other 

side of the pendulum to test negative angles for asymmetry. Data 

was recorded in Table I of Appendix A. 

Beginning at the largest angular displacement that fit 

within the bounds of the white background, the pendulum was 

recorded at 59.96 FPS until the amplitude of the pendulum was 

very small and the decrease in amplitude after every oscillation 

was unnoticeable. This video was imported into the program 

“Tracker” [3]. The grayscale and brightness filters were applied 

to help the tracking software better differentiate between the 

mass and the background. Scale was established using a 30 cm 

ruler that had been taped to the background so that it would be in 

the frame of the video. The program used this video to measure, 

in meters, the x-position of the mass in every frame. Using this 

data, angular displacement was calculated. First, the x-positions 

relative to the position of equilibrium were calculated by 

subtracting the mean x-position from each individual x-position. 

Then, the arcsine function was applied to the ratio between each 

“true x-position” and the originally measured pendulum length 

to represent these positions as angular displacement. Finally, the 

local extrema of the pendulum’s angular displacement were 

determined from these results. The absolute value of these local 

extrema provided values for the amplitude of the pendulum’s 

swing which was recorded in Table II of Appendix A along with 

the corresponding values for time elapsed. 



It was found from the results of the experiments 

previously described that the relationship between period and 

angle is experimentally constant between a certain range of 

small angles. The range associated with the uncertainties of the 

auto-tracking method was found to be between -0.28 ± 0.02 rad 

and 0.28 ± 0.02 rad (To see how this was found, see Appendix 

C). 

To find both the relationship between the pendulum 

length and the period, and the relationship between the 

pendulum length and the q factor, the following experiment was 

performed. The length of the pendulum was first adjusted to be 

1.1000 ± 0.0005 m by removing one screw, puling the fishing 

line to the desired height, and then refastening the screw. Then, 

the amplitude decay was measured using “Tracker” in the same 

way that previously described. This was repeated seven more 

times where the length was decreased between each trial. It was 

aimed for the eighth trial to have a length of approximately 15% 

of the starting length (actual measurement of 0.1630 ± 0.0005 

m). The change in length between each trial was generally 

constant, however, it was aimed to have smaller increments for 

the first three repetitions where the ratio between the size of the 

mass and the length of the pendulum would be smaller. The data 

generated at these longer lengths would therefore have lower 

uncertainties.  

Starting at amplitudes within the small angle range, 

multiple measurements of period were obtained for each length 

as this is represented as the time elapsed between each 

neighbouring pair of local maxima, and each neighbouring pair 

of local minima. This was recorded in Tables IV-XI of Appendix 

A. 

Upon inspection of the results from measuring Q factor 

using both methods as instructed by [1], it was determined that 

measuring Q factor using Equation 5 was more accurate, as it 

calls for amplitudes that decay exponentially. From the results of 

previously described experiments, the decay can be represented 

by an exponential function at smaller angles, and so this method 

is suitable for this setup. 

 

IV. Results 

 
Fig. 3. Identifies the relationship between angles of release and the average recorded period for a pendulum. Release angles ranging from -1.396 

rad to +1.396 rad were measured by hand, producing an uncertainty of ± 0.03 rad. Period was measured as an average using a handheld timer as 

described in I. Procedure, creating an uncertainty of ± 0.01 seconds. The data was fit to a quadratic curve using [4] and [5] (Using Equation 2: C = 

0.038 ± 0.002, B = 0.000 ± 0.001, T0 = 1.953 ± 0.005) which sufficiently describes the trend. As a result, this data disagrees with the predictions from 

Equation 1 since this pendulum consistently demonstrates a non-constant period over different angles.  

A. Angle and Period Measurements Performed by Hand. 

When determining the uncertainties for angle, there 

were only measurable Type B uncertainties. This was 

determined by tracing angle markers onto a page using a 

protractor which measured in increments of 1 degree, and then 

aligning the pendulum to the desired angle re releasing the 

pendulum. As a result, it was determined that angle could be 

measured with an uncertainty of ± 1 degrees which was divided 

by 2 in accordance with course expectations. This produced the 

uncertainty of ± 0.03 rad. 

When determining the uncertainties for period, there 

were Type B and Type A uncertainties. The Type B uncertainty 

can be represented by the reaction time of the experimenter 

which was measured to be an average of approximately 0.1 

seconds (see Table III in Appendix A). The Type A uncertainty 

was calculated to be approximately 0.003 seconds by calculating 

the ratio between the standard deviation of the measured time 

and the square root of the number of measurements. In 

accordance with course expectations, the highest uncertainty of 

0.1 seconds was accepted. This uncertainty was further reduced 

by a factor of 10 since 10 oscillations were measured in each 

trial when this method was used. 

 



 
Fig. 4.  Depicts the amplitude of a pendulum’s oscillation starting at an angle of 0.85 ± 0.02 rads over a particular time interval (see Table II in 

Appendix A for raw data). Comparing this fit to the exponential component of Equation 1 using [4] and [5], t = 0.746 ± 0.001 and τ = 162.5 ± 0.4. 

Since this was done using a frame-by-frame analysis of a 59.96-FPS video recording of the pendulum’s motion, the horizontal error bars are not 

visible as they are representing the ± 0.008 seconds of uncertainty in the measurement of time. In contrast, the vertical error bars represent the 

uncertainty of in the pendulum’s amplitude which is represented differently for each point. As shown by the residuals, fitting this data to an 

exponential function does not sufficiently describe the pattern formed by the decay of the pendulum’s amplitude. 

B. Angle and Period Measurements Performed Using Tracker 

 When determining the uncertainty in elapsed time, there 

were only measurable Type B uncertainties. In accordance with 

course expectations, this is represented as the lowest interval of 

measurement of time divided by 2. For the 59.96 Hz video 

recorded, the uncertainty was therefore approximately ± 0.008 

seconds.  

 To determine the uncertainty in measured angle there 

were only measurable Type B uncertainties. To determine this 

uncertainty, it was first required that the uncertainties of the x-

position and the length of the pendulum were determined. The 

uncertainty of the x-position of the mass could be calculated by 

considering that the smallest interval of measurement of these 

values was the diameter of the mass itself to account for the 

“motion distortion” in each frame as shown in Fig. 5. The 

uncertainty of the length was determined as the smallest interval 

of measurement (0.001 m) divided by 2. To calculate the angle 

of the pendulum, the x-position of the mass must be divided by 

the length. As a result, it is necessary to determine the largest 

percentage uncertainty between these values and multiply this 

ratio by this percentage accordingly. Then, the arcsine function 

was applied to this ratio and its uncertainty to receive each angle 

and its respective uncertainty.  

 
Fig. 5. Each frame of the video recorded of the pendulum had some 

distortion which increased the uncertainty in the mass’ x-position.

 

 
Fig. 6. Plots the relationship between the period and the length of the pendulum for lengths between 0.1630 ± 0.0005 m and 1.1000 ± 0.0005 m. 

Using [4] and [5], the data used for this graph was fitted to Equation 4 where k = 2.031 ± 0.004 and n = 0.498 ± 0.004.  On this plot, the vertical error 

bars are small, but they represent an uncertainty of ± 0.008 seconds resulting from the frame rate of 59.96 FPS that was used when recording the 

videos. The horizontal error bars are also too small to be visible, but they represent an uncertainty of ± 0.0005 m to reflect the uncertainty of 

measuring the length with a ruler that measured with an accuracy of 1 mm. 



 
Fig. 7.  Plots the relationship between the period and the length of the pendulum on a log-log plot for lengths between 0.1630 ± 0.0005 m and 

1.1000 ± 0.0005 m. Using [4] and [5], the data used for this graph was fitted to Equation 4 where k = 2.031 ± 0.004 and n = 0.498 ± 0.004.  On this 

plot, the vertical error bars are small, but they represent an uncertainty of ± 0.008 seconds resulting from the frame rate of 59.96 FPS that was used 

when recording the videos. The horizontal error bars are also too small to be visible, but they represent an uncertainty of ± 0.0005 m to reflect the 

uncertainty of measuring the length with a ruler that measured with an accuracy of 1 mm. 

C. Period Uncertainties used for Fig. 7. 

 Since it was considered that the period is constant at the 

angles measured for this experiment, it is important to note that 

type A uncertainties can also be calculated for the period 

measurements. However, for all periods measured, the type b 

uncertainty was larger. 

 

 
Fig. 8.  Shows the relationship between the measured Q factor and the length of the pendulum for lengths that range from 0.1630 ± 0.0005 m to 

1.1000 ± 0.0005 m. This graph was plotted using [4] and [5]. Upon comparing 5 different fitting functions (see Appendix D), it was determined that 

the trend was best represented by fitting the data to a fourth-degree polynomial such as the one described by Equation 6 where A = -210 ± 30, B = 

6300 ± 300, C = -14800 ± 900, D = 13000 ± 1000, and E = -3800 ± 400. On this plot, the small, vertical error bars represent the uncertainty 

calculated for the measurement of Q factor which varies for each point (ranges from ± 3 to ± 6, see Table XIII of Appendix A). In contrast, the 

horizontal error bars are constant for all points, however, they are too small to be visible. The horizontal error bars represent an uncertainty of ± 

0.0005 m to reflect the uncertainty of measuring length with a ruler to the nearest mm. These results indicate that the Q factor of the pendulum is 

strongly dependent on the length of the pendulum and as a result, there is a length between 1.1000 ± 0.0005 m and 0.9790 ± 0.0005 m where Q factor 

is maximized for this setup.  

 

 

 

 



D. Q factor Uncertainties Used for Fig. 8. 

 Since Q factor was measured using Equation 5, the 

uncertainty was determined by comparing the percentage 

uncertainties of the period and the calculated tau value at each 

point. In accordance with course expectations, the largest 

percentage uncertainty was taken and applied to the calculated Q 

factor. This resulted in a Q factor unique to each point.  

 

V. Analysis and Discussion 

A. Period vs Angle 

 As shown in Fig. 3, the trend in the data measured is 

best represented when fit with a quadratic function (see Equation 

2). This was done using [4] and [5] which outputted values for 

C, B, and T0. The value of B was found to be experimentally 

zero since it was calculated to be less than its uncertainty. This is 

an important result because it confirms that any asymmetrical 

characteristics of the pendulum’s motion were negligible.  

 Evidently, this result suggests that there is a 

relationship between the angle of release and the period of the 

pendulum’s swing. However, this data suggests that the period 

becomes experimentally constant at smaller angles. Data points 

below 0.35 rad would not have reinforced this conclusion since 

the error bars span below the vertex of the line of best fit. 

Following this conclusion, it was found that when using tracker, 

angles within -0.28 ± 0.02 rad to 0.28 ± 0.02 rad will yield 

periods that are experimentally constant (see Appendix C) 

B. Angular Amplitude vs Time Elapsed 

Fig. 4 provides a clear indication that the pendulum’s 

amplitude decays as time progresses since its initial release. The 

rate at which this decay occurs is still unknown since the data 

did not fit an exponential curve. 

Q factor must be determined using both methods, as instructed 

by [1]: 

1. According to [1], Q/n can be determined as the number 

of oscillations it takes for the amplitude of the 

pendulum’s motion to decay to (e-π/n *100) % of the 

original amplitude. From the results of B., the starting 

amplitude was 0.901 ± 0.008 rad and the final 

amplitude was 0.054 ± 0.008 rad. Therefore, Q factor is 

calculated to be 593 ± 2 (see Appendix B). 

 

2. The second method requires the use of Equation 5 [1]. 

Based on the mathematical model shown in Equation 1, 

it was determined that τ is equal to 162.5 ± 0.4 seconds 

using a fitted exponential function to the data points in 

Table II (see Appendix A). Similarly, period was 

calculated to be 1.968 ± 0.008 seconds by taking the 

average period of these data points. Using these values, 

Q factor was calculated to be 259 ± 1.  

These Q factors vary greatly from one another (a difference 

of 167 error bars). This is likely since both methods assume that 

the decay of the pendulum’s amplitude is exponential. 

Additionally, method #2 also makes use of a period that is 

assumed to be constant over the entire pendulum suggesting the 

conclusion that this method is less accurate. However, since 

neither method requires a specific range of amplitudes, a range 

of small angles were used in the experiments that followed that 

render both assumptions to be experimentally true. Now that 

both methods are applicable, method #2 is chosen to calculate Q 

factor since it conforms to the entire sample size whereas 

method #1 only considers the first and last recorded data points.  

C. Period vs Length 

 As shown in Fig. 7., a power law function has some 

correlation to the relationship between the period and the length 

of the pendulum. As indicated by the residuals however, this fit 

is not perfect as some points lie a significant amount of error 

bars away from the line of best fit. Moreover, while the 

parameter “n” in Equation 4 was experimentally equal to 0.5, the 

parameter “k” was not experimentally equal to 2 as predicted by 

[1]. In fact, the value for “k” was over 7 error bars above this 

predicted value. Upon further analysis, Equation 3 does not 

equate when imputing the associated units of each variable, 

suggesting there is likely another variable or a universal constant 

that was deemed negligible. As demonstrated by these results, 

this was a poor assumption. 

D. Q Factor vs Length 

 In Fig. 8., it is shown that the change in the calculated 

Q factor between adjacent points is generally on a scale of over 

10 error bars. This undeniably suggests that the measured Q 

factor of the pendulum is dependent on the length of a 

pendulum. Furthermore, after testing multiple best fit functions 

(see Appendix D), it was found that this relationship was best 

represented by a fourth-degree polynomial (see Equation 6). 

This was concluded since the other fit functions that were tested 

outputted higher uncertainties, and featured residuals where data 

points still formed a pattern. These are signs that the function 

was not representing the full relationship between the variables 

that were tested. The fitting of this curve results in a local 

maximum between the lengths of 1.1000 ± 0.0005 m and 0.9790 

± 0.0005 m. This indicates that the Q factor can be maximized 

for this given setup if the length is changed to the optimal length 

that would be found within this range. It is worth noting 

however, that this fit was made using 5 parameters to 8 data 

points. This calls the credibility of these results into question. To 

achieve more credible results, one must repeat this experiment 

for more pendulum lengths.  

VI. Uncertainties 

 In this lab, some assumptions were made about the 

experimental setup and methods of testing that could have 

affected certain outcomes of the experiments.  

One potential source of uncertainty in the results presented 

is found in the securement of the string ends at the pivot of the 



pendulum. As explained in section II, the pivot was established 

by screwing the string ends into a wooden board. By choosing to 

use this setup for these experiments, the assumption was 

implicitly made that the string would not be rubbing against the 

board or screw (generating friction), nor would it be slipping out 

of the hole (causing an increase in length). An attempt was made 

to avoid these effects by using new and reliable materials, 

however, a more secure system could have been constructed by 

sacrificing the feasibility at which the length could be manually 

adjusted. Additionally, unpredictable variations in the testing 

environment could have been identified and addressed by 

performing more trials which would permit the calculation of 

Type A uncertainties.  

An increase in unpredictable friction within the system 

would have an impact on the decay of the pendulum’s amplitude 

which was shown in Fig. 4. Similarly, any significant increase in 

length during the testing would impact the numerical results 

from the experiments summarized by Fig. 3, and Fig. 5-7. The 

experiments associated with these figures tested the period, and 

quality factor of the pendulum, both of which were concluded to 

have some relationship with the length of the pendulum. 

VII. Conclusion 

 In conclusion, the results of this lab clearly demonstrate 

that the claims made by [1] feature mistaken assumptions about 

the motion of a pendulum.  

First, contrary to what was assumed, the period of a 

pendulum is not independent of its amplitude and its amplitude 

does not decay exponentially for angles between 
𝜋

2
 and 0 rad. 

Accordingly, this disagrees with the provided mathematical 

model that is described in Equation 1. However, it was found 

that both assumptions become valid at a smaller range of angles 

that is determined by the accuracy to which the experimenter can 

measure the pendulum’s motion. Using the tracker method, this 

range of angles was calculated to be between -0.28 ± 0.02 rad 

and 0.28 ± 0.02 rad.  

As a consequence of these incorrect assumptions, the 

two suggested methods of measuring Q factor disagree as they 

both rely on the mathematical model correctly predicting the 

motion of the pendulum. To obtain the most accurate 

measurement of Q factor for this pendulum, it was determined 

that method #2 would be used since at the small range of 

amplitudes, both assumptions become experimentally true. With 

both methods deemed applicable, method #2 was chosen to 

calculate Q factor because it conforms to the entire sample size 

whereas method #1 only considers the first and last recorded 

data points. 

Even after using methods that addressed the previous 

mistaken assumptions, it was found that the period and length of 

the pendulum cannot be related by Equation 3, as predicted by 

[1].  

Finally, it was found that the Q factor of the pendulum 

was dependent on the length. Furthermore, the found 

relationship suggested that there is a length between 1.1000 ± 

0.0005 m and 0.9790 ± 0.0005 m which would maximize the Q 

factor of the pendulum. 

To achieve more specific and definitive conclusions, 

more data must be taken, primarily if more definitive 

conclusions are desired regarding the relationship between the Q 

factor and length of the pendulum. However, as previously 

discussed, data measured for smaller lengths will feature greater 

uncertainties. Therefore, to proceed, a smaller mass must be 

used, and future videos must be recorded at higher frame rates to 

obtain data that is still conclusive. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix A 

 

Table I. Raw data from Period vs Angle 

Table II. Raw data from Angular Amplitude vs Time Elapsed 

Table III. Reaction time of experimenter was determined by taking the average of 20 trials. In each trial, the goal 

of the experimenter was to start the timer used in Part 1: Period vs Angle and then stop it as close to 2.00 seconds as 

possible. Each time was recorded. The difference was considered the reaction time, and a mean reaction time was 

calculated to quantify the Type B uncertainty for the periods measured in Part 1: Period vs Angle. 

 

 

Table IV - XI. Raw data from pendulum videos recorded for different lengths. 

Table XII. Data calculated for Period vs Length 

Table XIII. Data calculated for Q Factor vs Length 

 

Appendix B 

Calculating Q factor using method #1.  

0.901 × 𝑒−
𝜋
𝑛 = 0.054 

ln(0.901  ×  𝑒−
𝜋
𝑛) = ln(0.054) 

ln(0.901) + (−
𝜋

𝑛
 × ln(e)) = ln(0.054) 

ln(0.901)  −
𝜋

𝑛
 × ln (e) = ln(0.054) 

𝑛 =  −
𝜋

ln(0.054) − ln(0.901)
 

# of oscillations =
𝑄

𝑛
 

# of oscillations × 𝑛 = 𝑄 

532 × (−
𝜋

ln(0.054) − ln(0.901)
) = 𝑄 

∴ Q = 593 

 

Calculating uncertainty for the Q factor measured 

using method #1 [7], [8].  

𝜎𝑛 = ± |
𝜋

max [(±
0.008
0.054

) , (±
0.008
0.901

)]
| 

𝜎𝑛 =  ± |
𝜋

max[(±10%) , (±0.9%)]
| 

𝜎𝑛 =  ± 0.3% 

 

57 positions were measured during this last 

oscillation 

→ 𝜎# 𝑜𝑓 𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛𝑠 =  ±
1

57
÷ 2  

→ 𝜎# 𝑜𝑓 𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛𝑠 = ±0.009 

 

∴ 𝜎𝑄 =  𝑄 × max[± 0.3%, ± 0.001%] 

∴ 𝜎𝑄 =  ± 2 

 

 

 



Appendix C 

Calculating the range of angles where the period is experimentally constant according to uncertainties generated in 

auto-tracking method: 

Obtain auto-tracked data representing the period vs amplitude relationship from Table II, Appendix A. Then fit to 

Equation 2 using [4] and [5]. This generated the following fit parameters: 

T0 = 1.9597208694222716 +/- 0.000020372751545723864 

B = 0.0007285943931826244 +/- 0.003056680125548378 

C = 0.05216760171605739 +/- 0.0006491686283426898 

The local minimum of this function can therefore be calculated to be ~ (0.00698 rad, 1.959734559 s). Then 

the uncertainty of measuring time with “Tracker” [3] (0.008 s) was added which indicated that angles on the 

quadratic fit function, whose corresponding period lies below the line of T = 1.967734559 would generate 

experimentally constant periods. Intersecting this line with the quadratic function found that angles above -0.313683 

rad, and below ~0.300273 rad generate periods that are experimentally constant. To account for the uncertainty in 

the ability to measure angles using this method (highest was 0.02 rad), it was considered that for the pendulum 

lengths measured, angles within -0.28 ± 0.02 to 0.28 ± 0.02 will yield periods that are experimentally constant. 

Appendix D 

 

Fig. 9. Same data as Fig. 7. but it was fitted to a linear function instead. 

 

Fig. 10. Same data as Fig. 7. but it was fitted to a quadratic function instead. 



 

Fig. 11. Same data as Fig. 7. but it was fitted to a third-degree polynomial function instead. 

 

Fig. 12. Same data as Fig. 7. but it was fitted to a exponential function instead. 

 

Fig. 13. Same data as Fig. 7. but it was fitted to a power law function instead. 
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